(本小题满分12分)某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:(1)恰有2人申请片区房源的概率;(2)申请的房源所在片区的个数的分布列和期望.
【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.
已知函数,e为自然对数的底数.(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;(Ⅱ)当x>0时,求证:;(Ⅲ)在区间(1,e)上恒成立,求实数a的取值范围.
已知椭圆的焦距为,离心率为.(Ⅰ)求椭圆方程;(Ⅱ)设过椭圆顶点B(0,b),斜率为k的直线交椭圆于另一点D,交x轴于点E,且|BD|,|BE|,|DE|成等比数列,求的值.
等差数列的前n项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前n项和为,求证:.
如图,在正方体中,M,N,G分别是,,AD的中点,求证:(1)MN//平面ABCD;(2)MN⊥平面.