已知非空集合,, (1)当时,求,;(2)求能使成立的的取值范围.
本小题满分14分)已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于。(1)证明:椭圆上的点到F2的最短距离为;(2)求椭圆的离心率e的取值范围;(3)设椭圆的短半轴长为1,圆F2与轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。
.(本小题满分13分)设函数(1)若函数在x=1处与直线相切①求实数a,b的值;②求函数上的最大值.(2)当b=0时,若不等式对所有的都成立,求实数m的取值范围.
.设数列(1)求(2)求证:数列{}是等差数列,并求的表达式.
(本小题满分12分)在直三棱柱中, AC=4,CB=2,AA1=2,E、F分别是的中点。(1)证明:平面平面;(2)证明:平面ABE;(3)设P是BE的中点,求三棱锥的体积。
(本小题满分12分)某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。