已知数列是等差数列,其前n项和为Sn,若,.(1)求;(2)若数列{Mn}满足条件: ,当时,-,其中数列单调递增,且,.①试找出一组,,使得;②证明:对于数列,一定存在数列,使得数列中的各数均为一个整数的平方.
在数列中,,. (1)设.证明:数列是等差数列; (2)求数列的前项和.
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面; (2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且. (1)求角的值; (2)若角,边上的中线=,求的面积.
设数列的前项和为,对一切,点都在函数的图象上 (1)求归纳数列的通项公式(不必证明); (2)将数列依次按1项、2项、3项、4项循环地分为(),,,;,,,;,….., 分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为, 求的值; (3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围
设数列为等差数列,且,数列的前项和为, (1)求数列的通项公式; (2)若,求数列的前项和.