(本小题满分12分)已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为白球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望.
椭圆方程为的一个顶点为,离心率。 (1)求椭圆的方程; (2)直线:与椭圆相交于不同的两点满足,求。
如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点。 (1) 求四棱锥的体积;(2)求证:;(3)求截面的面积。
函数。 (1)求的周期; (2)求在上的减区间; (3)若,,求的值。
潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分 布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。 (1)求居民月收入在的频率; (2)根据频率分布直方图算出样本数据的中位数; (3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中用 分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?
已知 x = 3 是函数 f ( x ) = a ln ( 1 + x ) + x 2 - 10 x 的一个极值点.
(Ⅰ)求 a ;
(Ⅱ)求函数 f ( x ) 的单调区间;
(Ⅲ)若直线 y = b 与函数 y = f ( x ) 的图象有3个交点,求 b 的取值范围。