(本小题满分12分)已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为白球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望.
设函数(1)求函数g(x)的极大值(2)求证(3)若,曲线y=与 y=是否存在公共点,若存在公共点,在公共点处是否存在公切线,若存在,求出公切线方程,若不存在,说明理由。
已知函数(1)若函数y=在(-1,1)内是减函数,求的取值范围(2)若函数y=在(-1,1)内有且只有一个极值点,求的取值范围
已知偶函数定义域为[-3,3],函数在[-3,0]上为增函数,求满足的x的集合.
已知△ABC的面积S满足(1)求角B的取值范围;(2)求函数的值域。
在△ABC中,角A,B,C所对的边分别为a,b,c,向量=(sinB+sinC,sinA-sinB),= (sinB-sinC,sin(B+C)),且⊥(1)求角C的大小;(2)若sinA=,求cosB的值。