(本小题满分12分)已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为白球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望.
已知函数, (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,求的值.
已知函数. (1)当时,求的解集; (2)当时,恒成立,求实数的集合.
在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为. (1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程; (2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
如图,圆的直径,是延长线上一点,,割线交圆于点,,过点作的垂线,交直线于点,交直线于点. (1)求证:; (2)求的值.
已知函数=(, (1)当时,判断函数在定义域上的单调性; (2)若函数与的图像有两个不同的交点,求的取值范围。 (3)设点和(是函数图像上的两点,平行于的切线以为切点,求证.