(本小题满分13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点, 直线的斜率、、、满足.已知当轴重合时,,.(1)求椭圆的方程;(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(8分)在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB和CD成60°角(见下图).求B、D间的距离
若f(x)=ax3+bx2,且f(x)在点P(-1,-2)处的切线恰好与直线3x-y=0垂直。(1)求a,b的值;(2)若f(x)在区间[0,m]上单调,求m的取值范围。
已知函数。 (Ⅰ)讨论函数的单调区间; (Ⅱ)若在恒成立,求的取值范围。
已知函数,,其中R. (Ⅰ)当a=1时判断的单调性; (Ⅱ)若在其定义域内为增函数,求正实数的取值范围; (Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)在中,为内角的对边,若,求的最大面积。