(本小题满分12分)已知函数(1)求的最小正周期;(2)求在区间上的取值范围.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线. (Ⅰ)求双曲线M的方程; (Ⅱ)设直线: 与双曲线M相交于A、B两点,O是原点. ① 当为何值时,使得? ② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点 . (I)求证:平面; (II)求二面角的余弦值大小; (III)求证:平面⊥平面.
已知三次函数在和时取极值,且.(Ⅰ) 求函数的表达式;(Ⅱ)求函数的单调区间和极值;(Ⅲ)若函数在区间上的值域为,试求、n应满足的条件。
设是平面上的两个向量,且互相垂直.(1)求λ的值;(2)若求的值.