(本小题满分12分)甲乙两位学生参加数学竞赛培训,在培训期间他们参加5次预赛成绩记录如下:甲: 78 76 74 90 82乙: 90 70 75 85 80(1)用茎叶图表示这两组数据;(2)从甲乙两人成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
已知函数,的最大值为2.(1)求函数在上的值域;(2)已知外接圆半径,,角所对的边分别是,求的值.
已知函数。(1)当a=3时,求不等式的解集;(2)若对恒成立,求实数a的取值范围。
在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π)。以原点为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为ρcos2θ=4sinθ。(1)求直线l与曲线C的平面直角坐标方程;(2)设直线l与曲线C交于不同的两点A、B,若,求α的值。
已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC(1)求证:MN=MB;(2)求证:OC⊥MN。
设函数,.(1)若函数在上单调递增,求实数的取值范围;(2)求函数的极值点.(3)设为函数的极小值点,的图象与轴交于两点,且,中点为,求证:.