有6名男医生,4名女医生.(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法?(2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8. (1)若a=2,b=,求cos C的值; (2)若sin Acos2+sin Bcos2=2sin C,且△ABC的面积S=sin C,求a和b的值.
数列{an}满足a1=1,a2=2,an+2=2an+1-an+2. (1)设bn=an+1-an,证明{bn}是等差数列; (2)求{an}的通项公式.
已知△ABC的内角A,B,C所对的边分别为a,b,c,且cos B=, a=2。 (1)若b=4,求sin A的值; (2)若△ABC的面积S△ABC=4,求b,c的值.
已知是递增的等差数列,是方程的根。 (1)求的通项公式; (2)求数列的前项和.
在△ABC中,角A,B,C所对的边分别是a,b,c,若sin2B+sin2C=sin2A+sin Bsin C,且bc=8,求△ABC的面积S.