甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.(Ⅰ)求在前3次抛掷中甲得2分,乙得1分的概率;(Ⅱ)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;(Ⅲ)用表示决出胜负抛硬币的次数,求的分布列及数学期望.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数. (Ⅰ)用表示xn+1; (Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式; (Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
用长为16米的篱笆,借助墙角围成一个矩形ABCD(如图),在P处有一棵树与两墙的距离分别为a米(0<a<12 )和4米。若此树不圈在矩形外,求矩形ABCD面积的最大值M.
已知函数. (1)求函数的定义域; (2)若函数在[10,+∞)上单调递增,求k的取值范围.
已知为的最小正周期,,且.求的值.
.已知是偶函数. (1)求的值; (2)证明:对任意实数,函数的图象与直线最多只有一个交点.