如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D、四点的位置,并顺次连接ABCD;(2)四边形ABCD的面积是________.(3)把四边形ABCD向左平移5个单位,再向上平移1个单位得到四边形A′B′C′D′,写出点A′、B′、C′、D′的坐标.
木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.
如图,Rt△ABC在平面直角坐标系中,BC在X轴上,B(﹣1,0)、A(0,2),AC⊥AB.(1)求线段OC的长.(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以个单位每秒速度向点C运 动,当一点停止运动,另一点也随之停止,设△CPQ的面 积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上、如果有求t值,如果没有说明理由.
(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,填空:①∠AEB的度数为 ;②线段AD、BE之间的数量关系是 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=.若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离.
国家限购以来,二手房和新楼盘的成交量迅速下降.据统计,无锡在限购前某季度二手房和新楼盘成交量为9500套.限购后,同一季度二手房和新楼盘的成交量共4425套.其中二手房成交量比限购前减少55﹪,新楼盘成交量比限购前减少52﹪.(1)问限购后二手房和新楼盘各成交多少套?(2)在成交量下跌的同时,房价也大幅跳水.某楼盘限购前均价为12000元/m,限购后,无人问津,房价进行调整,二次下调后均价为7680元/m,求平均每次下调的百分率?总理表态:让房价回归合理价位.合理价位为房价是可支配收入的3~6倍,假设无锡平均每户家庭(三口之家)的年可支配收入为9万元,每户家庭的平均住房面积为80 m,问下调后的房价回到合理价位了吗?请说明理由.
实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.(2)综合运用:在你所作的图中,①AB与⊙O的位置关系是________(直接写出答案);②若AC=5,BC=12,求⊙O的半径.