在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.
如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.
解不等式,并把它的解集在数轴上表示出来.
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.
(2)如图2,已知抛物线L3:与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式; (3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式为.
在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)得到△EFD,其中点A的对应点为点E,点B的对应点为点F.BE与FC相交于点H. (1)如图1,直接写出BE与FC的数量关系:____________; (2)如图2,M、N分别为EF、BC的中点.求证:MN= ; (3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.
已知关于x的一元二次方程(k≠0). (1)求证:无论k取何值,方程总有两个实数根; (2)点在抛物线上,其中,且和k均为整数,求A,B两点的坐标及k的值; (3)设(2)中所求抛物线与y轴交于点C,问该抛物线上是否存在点E,使得,若存在,求出E点坐标,若不存在,说明理由.