已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.
如图,、是反比例函数 (k>0)在第一象限图象上的两点,点的坐标为(2,0),若△与△均为等边三角形. (1)求此反比例函数的解析式; (2)求A2点的坐标.
如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,且与反比例函数的图象在第一象限交于C点,CD垂直与x轴,垂足为D.若OA=OB=OD=1,(1)求点A,B,D的坐标;(2)求一次函数和反比例函数的解析式。
正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.
如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
如图,将边长为4的等边三角形AOB放置于平面直角坐标系xOy中,F是AB边上的动点(不与点A,B重合),过点F的反比例函数(,)与OA边交于点E,过点F作FC⊥x轴于点C,连接EF,OF.(1)若,求反比例函数的解析式.(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与轴的位置关系,并说明理由.(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.