一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出 △ABC关于y轴对称图形△A1B1C1.
如图,△ABC中,AB=AC,AE是外角∠CAD的平分线,求证:AE∥BC
在△ABC中,∠B=∠A+20O,∠C=∠B+20O,求△ABC的三个内角的度数.
已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点. (1)如图1,若点C的横坐标为4,求点B的坐标; (2)如图2,BC交x轴于D,AD平分∠BAC,若点C的纵坐标为3,A(5,0),求点D的坐标. (3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM:S△ABO.
如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.