为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.(1)小明的调查是抽样调查吗?(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量.(3)这个调查的结果能较好地反映总体的情况吗?如果不能,请说明理由.
(满分l2分)某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图 (1)第四个月销量占总销量的百分比是_______; (2)在图10-13中补全表示B品牌电视机月销量的折线; (3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率; (4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
(满分l0分)如图,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①,②,③所示(图中a,b,c…表示长度,α,β,θ…表示角度). (1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______; (2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.
(满分l2分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线x从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为a. (1)①当a=______°时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当a=______°时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当a=90°时,判断四边形EDBC是否为菱形,并说明理由。
(满分l2分)已知:如图在平面直角坐标系x回中,直线AB分别与x轴、y轴交于点B,A,与反比例函数y =(K≠0)的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2. (1)求该反比例函数的解析式; (2)求直线AB的解析式.
(每小题8分,共16分) (1)先化简,再求值:,其中x=一3; (2)如图,MP切⊙O于点M,直线P0交⊙O于点A,B,弦AC∥MP,求证:MO∥BC.