如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.
如图所示,在△ABC中,∠ABC=∠ACB. (1)尺规作图:过顶点A,作△ABC的角平分线AD;(不写作法,保留作图痕迹) (2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.
解不等式,将解集在数轴上表示出来,并写出它的非负整数解.
在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.
如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。 (1)求证:△ABE∽△ECM; (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由; (3)求当线段AM最短时的长度
如图,在直角坐标系中,A点在x轴上,AB∥y轴,C点在y轴上,CB∥x轴,点B的坐标为(8,10),点D在BC上,将△ABD沿直线AD翻折,使得点B刚好落在y轴的点E处. (1)求△CDE的面积; (2)求经过A、D、O三点的抛物线的解析式; (3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,问是否存在这样的点M和点N,使得以A、E、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M和点N的坐标;若不存在,请说明理由.