已知曲线的参数方程是(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,正方形ABCD的顶点都在上,且A、B、C、D依逆时针次序排列,点A的极坐标为,(1)求点A、B、C、D的直角坐标;(2)设P为上任意一点,求的取值范围.
本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分. 已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于两点. (1)求椭圆的方程; (2)当直线的斜率为1时,求的面积; (3)在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.
本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元,设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体中,,,点在棱上移动. (1)证明:; (2)等于何值时,二面角的大小为.
本题共有2小题,第(1)小题满分6分,第(2)小题满分6分. 已知函数. (1)化简并求函数的最小正周期; (2)求使函数取得最大值的集合.
(本小题满分10分)选修4-5:不等式选讲 已知函数 (1)解不等式; (2)对任意,都有成立,求实数的取值范围.