【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.
设函数. (1)解不等式; (2)当时,证明:.
已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为. (1)将曲线C的极坐标方程化为直坐标方程; (2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且. (1)证明:; (2)延长CD到F,延长DC到G,使得,证明:A,B,G,F四点共圆.
已知函数在上是增函数,且. (1)求a的取值范围; (2)求函数在上的最大值. (3)已知,证明.
如图,椭圆和圆,已知圆将椭圆的长轴三等分,且圆的面积为,椭圆的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线与圆相交于点A、B,直线EA、EB与椭圆的另一个交点分别是点P、M. (1)求椭圆的方程; (2)求面积最大值.