(本小题满分12分)若函数的图象与直线为常数)相切,并且切点的横坐标依次构成公差为的等差数列.(Ⅰ)求及的值;(Ⅱ)求函数在上所有零点的和.
如图,在四棱锥 P - A B C D 中, A B / / C D , A B ⊥ A D , C D = 2 A B ,平面 P A D ⊥ 底面 A B C D , P A ⊥ A D . E 和 F 分别是 C D 和 P C 的中点,求证:
(Ⅰ) P A ⊥ 底面 A B C D ; (Ⅱ) B E / / 平面 P A D ; (Ⅲ)平面 B E F / / 平面 P C D
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.
(Ⅰ)求此人到达当日空气质量优良的概率; (Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
已知函数 f ( x ) = ( 2 cos 2 x - 1 ) sin 2 x + 1 2 cos 4 x (Ⅰ)求 f ( x ) 的最小正周期及最大值; (Ⅱ)若 a ∈ π 2 , π ,且 f ( a ) = 2 2 ,求 a 的值.
已知函数 f x = x - 1 + a e x ( a ∈ R , e 为自然对数的底数) (Ⅰ)若曲线 y = f x 在点 1 , f x 处的切线平行于 x 轴,求 a 的值; (Ⅱ)求函数 f x 的极值; (Ⅲ)当 a = 1 时,若直线 l : y = k x - 1 与曲线 y = f x 没有公共点,求 k 的最大值.
如图,在等腰直角 △ O P Q 中, ∠ P O Q = 90 ° , O P = 2 2 ,点 M 在线段 P Q 上.
(Ⅰ) 若 O M = 5 ,求 P M 的长; (Ⅱ)若点 N 在线段 M Q 上,且 ∠ M O N = 30 ° ,问:当 ∠ P O M 取何值时, △ O M N 的面积最小?并求出面积的最小值.