(本小题满分13分)已知函数,其中.(1)当时,求在上的最大值;(2)若时,函数的最大值为,求函数的表达式;
如图,已知平面是正三角形,且.(1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:(1)连续取两次都是红球的概率;(2)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取到黑球的概率。
数列对任意,满足.(1)求数列通项公式;(2)若,求的通项公式及前项和.
已知,且、、是正数,求证:.
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长。