在平面四边形ABCD中,ABC为正三角形,ADC为等腰直角三角形,AD=DC=2,将ABC沿AC折起,使点B至点P,且PD=2,M为PA的中点,N在线段PD上。(I)若PA平面CMN,求证:AD//平面CMN;(II)求直线PD与平面ACD所成角的余弦值。
(本小题满分12分)设数列的前项和为,点在直线上,(为常数,,).(1)求;(2)若数列的公比,数列满足,,,求证:为等差数列,并求;(3)设数列满足,为数列的前项和,且存在实数满足,求的最大值.
(本小题满分10分) 将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数的分布列和数学期望;(2)求取出3个小球中红球个数多于白球个数的概率.
(本小题满分12分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
(本小题满分14分) 已知数列的前n项和Sn=9-6n. (1)求数列的通项公式.(2)设,求数列的前n项和.
(本小题满分12分)过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点, ①△ABO的面积为S,求S的最小值并求此时直线l的方程;②当|OA|+|OB|最小时,求此时直线L的方程