已知圆与抛物线相交于,两点(Ⅰ)求圆的半径,抛物线的焦点坐标及准线方程;(Ⅱ)设是抛物线上不同于的点,且在圆外部,的延长线交圆于点,直线与轴交于点,点在直线上,且四边形为等腰梯形,求点的坐标.
已知直线。 (Ⅰ)当时,求直线的斜率; (Ⅱ)若直线的倾斜角为,求范围。
若定义在上的函数满足条件:存在实数且,使得: ⑴ 任取,有(是常数); ⑵ 对于内任意,当,总有。 我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题: (1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。 (2) 已知是“平顶型”函数,求出的值。 (3)对于(2)中的函数,若在上有两个不相等的根,求实数的取值范围。
已知是公差为的等差数列,它的前项和为, 等比数列的前项和为,,, (1)求公差的值; (2)若对任意的,都有成立,求的取值范围; (3)若,判别方程是否有解?说明理由.
已知函数,且. (1)求实数c的值; (2)解不等式
设函数。 (1)当时,求函数的最小值; (2)当时,试判断函数的单调性,并证明。