如图,正方形的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于点.(1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.(1)求C1的方程;(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
在如右图的几何体中,四边形为正方形,四边形为等腰梯形,∥,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.(1)设数列为1,3,5,7,,写出,,的值;(2)若为等差数列,求出所有可能的数列;(3)设,,求的值.(用表示)