在正方体ABCD-A1B1C1D1中,求证:AC1BD.
若一动点M与定直线l:x=及定点A(5,0)的距离比是4∶5.(1)求动点M的轨迹C的方程;(2)设所求轨迹C上有点P与两定点A和B(-5,0)的连线互相垂直,求|PA|·|PB|的值.
已知离心率为的椭圆的中心在原点,焦点在x轴上.双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2.求椭圆及双曲线的方程
如图,四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥爬行,若在每顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰回到S点的概率为Pn(n≥2,n∈N).(1)求P2,P3的值;(2)求证:3Pn+1+Pn=1(n≥2,n∈N);(3)求证:P2+P3+…+Pn>(n≥2,n∈N).
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)求抽取的4名工人中恰有2名男工人的概率
袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.(1)共有多少种不同结果?(2)取出的3球中有2个白球,1个黑球的结果有几个?(3)取出的3球中至少有2个白球的结果有几个?(4)计算第(2)、(3)小题表示的事件的概率