空间四边形ABCD中,M 、N分别是AD、BC的中点.求证: AB+CD>2MN
已知数列满足(). (1)若数列是等差数列,求它的首项和公差; (2)证明:数列不可能是等比数列; (3)若,(),试求实数和的值,使得数列为等比数列;并求此时数列的通项公式.
已知函数和的图像关于原点对称,且. (1)求函数的解析式; (2)解不等式; (3)若函数在区间上是增函数,求实数的取值范围.
已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上. (1)求椭圆的方程; (2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆于、两点,求证:为定值.
设,函数,. (1)求函数的最小正周期和单调递增区间; (2)若,求的值.
如图,正三棱锥的底面边长为,侧棱长为,为棱的中点. (1)求异面直线与所成角的大小(结果用反三角函数值表示); (2)求该三棱锥的体积.