过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.(1)试证明A,B两点的纵坐标之积为定值;(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3,试探求k1,k2,k3之间的关系,并给出证明.
在中,角所对的边分别为,已知, (Ⅰ)求的大小; (Ⅱ)若,求的取值范围.
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为() (Ⅰ)求曲线的普通方程和曲线的直角坐标方程; (Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程
设(且) (Ⅰ)讨论函数的单调性; (Ⅱ)若,证明:时,成立
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且 (Ⅰ)求椭圆的离心率; (Ⅱ)过点与圆相切的直线与的另一交点为,且的面积为,求椭圆的方程
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN (Ⅰ)证明:MN//平面ABC; (Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小