过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.(1)试证明A,B两点的纵坐标之积为定值;(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3,试探求k1,k2,k3之间的关系,并给出证明.
已知数列中,,,(1)求证:数列为等比数列。(2)设数列的前项和为,若,求正整数列的最小值。
设的三个内角所对的边分别为.已知. (1)求角A的大小;(2)若,求的最大值.
已知函数.(I)当时,求函数的单调区间;(II)若函数的图象在点处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.
如图,多面体ABCDS中,面ABCD为矩形,且,。(I)求多面体ABCDS的体积;(II)求AD与SB所成角的余弦值;(III)求二面角A—SB—D的余弦值。