(文科)已知以原点为对称中心、F(2,0)为右焦点的椭圆C过点P(2,),直线:y=kx+m(k≠0)交椭圆C于不同的两点A、B。(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在k的值,使线段AB的垂直平分线经过点Q(0,3),若存在求出 k的取值范围,若不存在,请说明理由。
在△ABC中,已知角A、B、C所对的三条边分别是a、b、c且满足b2=ac. 求证:0<B≤;(2)求函数y=的值域.
已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点是抛物线D上的两个动点,且 (1)求抛物线D的方程及y1y2的值; (2)求线段AB中点轨迹E的方程; (3)在曲线E上寻找一点,使得该点与直线的距离最近.
如图所示,在直三棱柱中,,,,,是棱的中点. (1)证明:平面; (2)求二面角的余弦值.
已知函数上单调递增,在(-1,2)上单调递减,又函数. (1)求函数的解析式; (2)求证当
如图,平面,四边形是正方形,,点、、分别为线段、和的中点. 在线段上是否存在一点,使得点到平面的距离恰为?若存在,求出线段的长; 若不存在,请说明理由.