本小题满分14分)如图,在直三棱柱中,,,,点、分别是、的中点. (Ⅰ)求证:平面; (Ⅱ)证明:平面平面;(Ⅲ)求多面体A1B1C1BD的体积V.
在数列中,(1)证明是等比数列,并求的通项公式;(2)求的前n项和Sn
已知,函数(1)求方程g(x)=0的解集;(2)求函数f(x)的最小正周期及其单调增区
已知函数(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;(2)判断函数f(x)的单调性;(3)求证:
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线与双曲线C相交于两个不同的点M, N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:(1)要使工厂有盈利,产品数量x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?