(文科)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程选讲已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)若将曲线与上各点的横坐标都缩短为原来的一半,分别得到曲线和,求出曲线和的普通方程;(2)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求过极点且与垂直的直线的极坐标方程.
(本小题满分10分)选修4-1:几何证明选讲如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,且交于点,交于点.(1)求的度数;(2)若,求.
(本小题满分12分)已知,.(1)求的单调区间;(2)若时,恒成立,求实数的取值范围;
(本小题满分12分)已知椭圆()的离心率为,且短轴长为2.(1)求椭圆的方程;(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,,求直线的方程.
(本小题满分12分)在四棱锥中,底面是一直角梯形,,,底面.(1)求三棱锥的体积;(2)在上是否存在一点,使得平面,若存在,求出的值;若不存在,试说明理由.