(本小题满分10分)选修4-4:坐标系与参数方程选讲已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)若将曲线与上各点的横坐标都缩短为原来的一半,分别得到曲线和,求出曲线和的普通方程;(2)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求过极点且与垂直的直线的极坐标方程.
已知函数在区间(0,1)内连续,且.(1)求实数k和c的值;(2)解不等式
(本小题满分14分)已知m,n为正整数.(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;(Ⅱ)对于n≥6,已知,求证,m=1,1,2…,n;(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.
对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为(1≤a≤3).设用单位质量的水初次清洗后的清洁度是(),用质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(Ⅰ)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;(Ⅱ)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.
求的值。
一个扇形的周长为,求扇形的半径,圆心角各取何值时,此扇形的面积最大?