(文科)如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
如图,在中,,且,点满足,(1)用、向量表示向量.(2)求
(本题满分10分,每小题各5分)(1)求值:(2)求证:,
(本小题满分14分)已知椭圆()经过点,且椭圆的左、右焦点分别为、,过椭圆的右焦点作两条互相垂直的直线,分别交椭圆于点、及、.(1)求椭圆的方程;(2)求的值;(3)求的最小值.
(本小题满分14分)已知为数列的前项和,且有,().(1)求数列的通项公式;(2)若数列满足,其前项和为,求证:.
(本小题满分14分)如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.(1)求证:平面;(2)若平面且,求平面和平面所成的角(锐角)的余弦值.