(文科)如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若,,a=2,且·=. (1)若△ABC的面积S=,求b+c的值. (2)求b+c的取值范围.
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,. (1)求抛物线的方程; (2)设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
已知函数. (1)当时,求的单调区间; (2)若不等式有解,求实数m的取值菹围; (3)证明:当a=0时,.
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点. (1)证明:直线平面; (2)若,求二面角的平面角的余弦值.
设数列的前项和为, 已知,,,是数列的前项和. (1)求数列的通项公式;(2)求; (3)求满足的最大正整数的值.