(理科)已知动圆C与圆相外切,与圆相内切,设动圆圆心C的轨迹为T,且轨迹T与x轴右半轴的交点为A.(Ⅰ)求轨迹T的方程;(Ⅱ)已知直线l:y=kx+m与轨迹为T相交于M、N两点(M、N不在x轴上).若以MN为直径的圆过点A,求证:直线l过定点,并求出该定点的坐标.
设数列前项和为, 满足 . (1)求数列的通项公式; (2)令求数列的前项和; (3)若不等式对任意的恒成立,求实数的取值范围.
某兴趣小组测量电视塔的高度(单位),如示意图,垂直放置的标杆高度,仰角,. (1)该小组已经测得一组的值,,,请据此算的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离(单位),使与之差较大,可以提高测量精确度,若电视塔实际高度为,问为多少时,最大?
已知集合 , , 求.
在中,角所对的边分别为, 且成等差数列,成等比数列. 求证:为等边三角形.
(本小题满分12分) 已知函数且导数. (1)试用含有的式子表示,并求的单调区间; (2)对于函数图象上不同的两点,且,如果在函数图像上存在点(其中)使得点处的切线,则称存在“相依切线”.特别地,当时,又称存在“中值相依切线”.试问:在函数上是否存在两点使得它存在“中值相依切线”?若存在,求的坐标,若不存在,请说明理由.