(文科)已知椭圆:的离心率是,其左、右顶点分别为,,为短轴的端点,△的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的右焦点,若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点.
已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并证明.
已知集合,.(1)存在,使得,求的取值范围;(2)若,求的取值范围.
(1)设,求的值;(2)已知,且,求的值.
已知函数,设曲线在与轴交点处的切线为,为的导函数,满足.(1)求;(2)设,,求函数在上的最大值;(3)设,若对于一切,不等式恒成立,求实数的取值范围.
设是同时符合以下性质的函数组成的集合:①,都有;②在上是减函数.(1)判断函数和()是否属于集合,并简要说明理由;(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.