(本小题满分12分) 已知函数 (I)当1<a <4时,函数在[2,4]上的最小值为,求a; (Ⅱ)若存在x0∈(2,+∞),使得 <0,求a的取值范围.
已知是等差数列,设N+), N+),问Pn与Qn哪一个大?并证明你的结论.
长方体中,(1)求直线所成角;(2)求直线所成角的正弦.
.已知盒子中有4个红球,2个白球,从中一次抓三个球(1)求没有抓到白球的概率;(2)记抓到球中的红球数为X ,求X的分布列和数学期望.
变换对应的变换矩阵是(1)求点在作用下的点的坐标;(2)求函数的图象在变换的作用下所得曲线的方程.
已知函数.(1)求的单调递增区间;(2)若在处的切线与直线垂直,求证:对任意,都有;(3)若,对于任意,都有成立,求实数的取值范围.