(理科)在平面直角坐标系中,设点,以线段为直径的圆经过原点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
如图所示,已知矩形ABCD所在平面,M、N分别是AB、PC的中点。 (1)求证:平面PAD; (2)求证:
设是定义在R上的函数 (1)f(x)可能是奇函数吗? (2)当a=1时,试研究f(x)的单调性
已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求 (1)BC边上的中线AD所在的直线方程; (2)△ABC的面积
某电厂冷却塔外形是如图所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m. (1)建立坐标系并写出该曲线的方程; (2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14)
直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆C以A、B为焦点且经过点D. (1)建立适当坐标系,求椭圆C的方程; (2)若点E满足,问是否存在不平行AB的直线l与椭圆C交于M、N两点且,若存在,求出直线l与AB夹角的范围,若不存在,说明理由