已知函数,(1)当时,解不等式(2)若函数有最大值,求实数的值.
已知函数,、是图像上两点. (1)若,求证:为定值; (2)设,其中且,求关于的解析式; (3)对(2)中的,设数列满足,当时,,问是否存在角,使不等式…对一切都成立?若存在,求出角的取值范围;若不存在,请说明理由.
如图,在正三棱柱中,底面△的边长为,为的中点,三棱柱的体积. (1)求该三棱柱的侧面积; (2)求异面直线与所成角的大小(结果用反三角函数值表示)
已知复数,,其中,为虚数单位. (1)若是实数(其中为的共轭复数),求实数的值; (2)若,求实数的取值范围.
已知复数,其中、为实数,为虚数单位,为的共轭复数,且存在非零实数,使成立. (1)求的值; (2)若,求实数的取值范围.
已知数列的前项和为,,(为正整数). (1)求数列的通项公式; (2)记,若对任意正整数,恒成立,求的取值范围? (3)已知集合,若以a为首项,a为公比的等比数列前n项和记为,问是否存在实数a使得对于任意的.若存在,求出a的取值范围;若不存在,说明理由.