已知数列是首项为,公比的等比数列,设,数列.(1)求数列的通项公式;(2)求数列的前n项和Sn.
函数(1)a=0时,求f(x)最小值;(2)若f(x)在是单调减函数,求a的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望
从名男生和名女生中任选人参加演讲比赛,①求所选人都是男生的概率;②求所选人恰有名女生的概率;③求所选人中至少有名女生的概率.
(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于;(2)已知,试用分析法证明:.
已知函数.(1)当时,求的值域;(2)当,时,函数的图象关于对称,求函数的对称轴;(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,,…,…且,求的解析式.