已知数列是首项为,公比的等比数列,设,数列.(1)求数列的通项公式;(2)求数列的前n项和Sn.
已知点F(0, 1),直线: ,圆C: .(Ⅰ) 若动点到点F的距离比它到直线的距离小1,求动点的轨迹E的方程;(Ⅱ) 过轨迹E上一点P作圆C的切线,切点为A、B,当四边形PACB的面积S最小时,求点P的坐标及S的最小值。
设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)当时求由A、B、C、D四点组成的四边形的面积。
已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.
已知函数,仅当时取得极值且极大值比极小值大4,求的值.
(本小题满分12分)如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.(1)求证:BC⊥平面PAC.(2)求证:PB⊥平面AEF.(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?