如图,在四棱柱中,底面是等腰梯形,,∥,顶点在底面内的射影恰为点.(Ⅰ)求证:;(Ⅱ)在上是否存在点,使得∥平面?若存在,确定点的位置;若不存在,请说明理由.
(本小题满分14分)已知曲线:(其中为自然对数的底数)在点处的切线与轴交于点,过点作轴的垂线交曲线于点,曲线在点处的切线与轴交于点,过点作轴的垂线交曲线于点,……,依次下去得到一系列点、、……、,设点的坐标为().(Ⅰ)分别求与的表达式;(Ⅱ)设O为坐标原点,求
(本小题满分14分)已知曲线;(1)由曲线C上任一点E向X轴作垂线,垂足为F,。问:点P的轨迹可能是圆吗?请说明理由;(2)如果直线L的斜率为,且过点,直线L交曲线C于A,B两点,又,求曲线C的方程。
(本小题满分14分)如图所示,已知曲线交于点O、A,直线与曲线、分别交于点D、B,连结OD,DA,AB.(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为(2)求函数在区间上的最大值.
(本小题满分12分)中央电视台《同一首歌》大型演唱会曾在我市湄洲岛举行,之前甲、乙两人参加大会青年志愿者的选拔.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题。规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选(两人独立答题)。(Ⅰ)求甲答对试题数ξ的概率分布(列表)及数学期望;(Ⅱ)求甲、乙两人至少有一人入选的概率(设甲、乙两人考试合格的事件分别为A、B).
(本小题满分14分)如图,正方体的棱长为2,E为AB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1与CE所成角的余弦值;(Ⅲ)求点B到平面的距离.