已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.
现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车相每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省最少运费为多少元?
如图,在平面直角坐标系中,二次函数的图象交x轴于两点,交轴于点,点为抛物线的顶点,且两点的横坐标分别为1和4.(1)求点B的坐标;(2)求二次函数的函数表达式;(3)在(2)的抛物线上,是否存在点P,使得45°?若存在,求出点P的坐标;若不存在,请说明理由.
如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E。(1)求证:AC是⊙O的切线;(2)若AD:DB=3:2,AC=15,求⊙O的直径。
红星建材店为某工厂经销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该建材店要获得最大月利润,售价应定为每吨多少元?
如下图,在1010的正方形网格中,每个小正方形的边长均为1个单位,将向下平移4个单位,得到,再把绕点顺时针旋转90°,得到,请你画出和(不要求写画法)