(10分) 如图,已知二次函数y=ax2+bx+c的图像过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图像与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.(1)试问小球通过第二层位置的概率是多少?(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层位置处的概率各是多少? 解:
下图是由权威机构发布的,在1993年4月~2005年4月期间由中国经济状况指标之一中国经济预警指数绘制的图表.
已知抛物线与x轴交于不同的两点和,与y轴交于点C,且是方程的两个根(). (1)求抛物线的解析式;(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线分别交轴、轴于两点.点、,以为一边在轴上方作矩形,且.设矩形与重叠部分的面积为.(1)求点、的坐标;(2)当值由小到大变化时,求与的函数关系式;(3)若在直线上存在点,使等于,请直接写出的取值范围.
如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形. (1)如果,, ①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 __________ ,线段的数量关系为 ; ②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.