【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
如图,在平面直角坐标系中,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB="BC." 若A点的坐标为(,1),B、C两点的纵坐标均为,D、E两点在轴上. (1)、求证:等腰△BCA两腰上的高相等; (2)、求△BCA两腰上高线的长; (3)、求△DEF的高线FP的长.
在锐角△ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,且l与m相交于点P.若∠A=60°,∠ACP=24°,求∠ABP的度数.
某工厂加工1000个机器零件以后,改进操作技术,工作效率提高到原来的2.5倍. 现在加工1000个机器零件,可提前15天完成. 求改进操作技术后每天加工多少个零件?
如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE. 求证:(1)、∠ACB=∠DBE; (2)、∠ACB=∠AFB.
解分式方程:.