(本小题满分12分)已知三棱锥中,⊥面,是的中点,,(Ⅰ)求证:;(Ⅱ)若是的中点,则平面将三棱锥分成的两部分的体积之比.
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?
设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.
某工厂需要围建一个面积为平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?
已知二次函数在处取得极值,且在点处的切线与直线平行. (1)求的解析式; (2)求函数的单调递增区间及极值;(3)求函数在的最值.
设数列满足, (1)求;(2)猜想出的一个通项公式并用数学归纳法证明你的结论.