(本小题满分16分)已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列前n项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)若,求正整数m的值;(Ⅲ)是否存在正整数m,使得恰好为数列中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.
在数列中,a1=2, b1=4,且成等差数列,成等比数列()(Ⅰ)求a2, a3, a4及b2, b3, b4,由此猜测{an},{bn}的通项公式,并证明你的结论;(Ⅱ)证明:.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
设复数,若,求实数m,n的值.
设命题:,命题:,若是的必要不充分条件,求实数的取值范围.
已知函数在区间上为增函数,且。(1)当时,求的值;(2)当最小时,①求的值;②若是图象上的两点,且存在实数使得,证明:。