如图,是⊙的直径,是⊙上一点,是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.(1)求证:AF⊥EF; (2)若,AB=5,求线段BE的长.
已知函数(1) 若函数在上单调,求的值;(2)若函数在区间上的最大值是,求的取值范围.
设是虚数,是实数,且(1) 求的实部的取值范围(2)设,那么是否是纯虚数?并说明理由。
已知数列满足(I)求数列的通项公式;(II)若数列中,前项和为,且证明:
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.