(本小题满分14分)已知函数.(Ⅰ)求函数的图象在点处的切线方程;(Ⅱ)是否存在实数,当时,函数的最小值为?若存在,求出的取值范围;若不存在,说明理由;(Ⅲ)若,求证:.
(本小题满分12分)已知数列的前项和为,,,.(Ⅰ) 求证:数列是等比数列;(Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值。
(本小题满分12分)如图,在多面体中,底面是边长为的的菱形,,四边形是矩形,平面平面,,和分别是和的中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的大小.
(本小题满分12分)已知函数在处取得极值。(1)求的值;(2)求证:对任意,都有
(本小题满分12分)已知函数.(1)若,求函数的最大值和最小值,并写出相应的的值;(2)设的内角、、的对边分别为,满足,且,求的值.
(本小题满分10分)【选修4-5:不等式选讲】设函数().(Ⅰ)证明:;(Ⅱ)若,求的取值范围.