(本小题满分14分)设递增数列满足,且.(1)证明:数列是等差数列;(2)设,记数列的前项和为,使得不等式成立的最大正整数的值.
(本小题满分12分) 已知向量,设函数,(Ⅰ)求函数的表达式;(Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求边的长.
集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数,都有. (1)试判断f(x)= x2及g(x)=log2x是否在集合A中,并说明理由; (2)设f(x)ÎA且定义域为(0,+¥),值域为(0,1),,试求出一个满足以上条件的函数f (x)的解析式.
(本小题满分14分)已知,设:函数在R上单调递减;:函数的图象与x轴至少有一个交点.如果P与Q有且只有一个正确,求的取值范围.
已知函数(1)(2)
(本小题满分14分)某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现在提高售价以赚取更多利润.已知每涨价0.5元,该商店的销售量会减少10件,问将售价定为多少时,才能使每天的利润最大?其最大利润为多少?