已知函数 f x = x 3 + a x + 1 4 , g x = - ln x . (Ⅰ)当 a 为何值时, x 轴为曲线 y = f x 的切线; (Ⅱ)用 m i n m , n 表示 m , n 中的最小值,设函数 h x = m i n f x , g x x > 0 ,讨论 h x )零点的个数.
提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时. (Ⅰ) 当0<x≤200时,求函数v(x)的表达式;(Ⅱ) 当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到个位,参考数据)
已知函数的图象在与轴交点处的切线方程是.(Ⅰ)求函数的解析式;(Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.
已知.(Ⅰ) 若不等式在区间上恒成立,求实数的取值范围;(Ⅱ) 解关于的不等式.
对于函数 (1)探索函数的单调性;(2)是否存在实数,使函数为奇函数?
已知函数.(Ⅰ)若函数的值域为,求的值;(Ⅱ)若函数的函数值均为非负数,求的值域.