选修4-1:几何证明选讲
如图, A B 是 ⊙ O 的直径, A C 是 ⊙ O 的切线, B C 交 ⊙ O 于 E .
(Ⅰ)若 D 为 A C 的中点,证明: D E 是 ⊙ O 的切线;
(Ⅱ)若 O A = 3 C E ,求 ∠ A C B 的大小.
给定直线m:y=2x-16,抛物线C:y2=ax(a>0).(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
已知椭圆C:=1()的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆的方程;(2)设直线与椭圆交于、两点,坐标原点到直线的距离为,求△面积的最大值.
已知圆C的方程为,直线.(1)求的取值范围; (2)若圆与直线交于P、Q两点,且以PQ为直径的圆恰过坐标原点,求实数的值.
在直角坐标系xOy中,圆C:,圆心为C,圆C与直线的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线与垂直,且与圆C交于不同两点A、B,若,求直线的方程.
点到的距离是点到的距离的倍.(1)求点的轨迹方程;(2)点与点关于点对称,点,求的最大值和最小值.(3)若过的直线从左向右依次交第(2)问中的轨迹于不同两点,,,判断的取值范围并证明.