给定直线m:y=2x-16,抛物线C:y2=ax(a>0).(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
(1)已知复数z="(2+i)(i-3)+4-2i;" 求复数z的共轭复数及||; (2)设复数z1=(a2-2a)+ai是纯虚数,求实数a的值。
在高中阶段,在各个领域我们学习许多知识,在语言与文学领域,学习语文和外语,在数学领域学习数学;在人文与社会领域,学习思想政治、历史和地理;在科学领域,学习物理、化学和生物;在技术领域,学习通用技术和信息技术;在艺术领域学习音乐、美术和艺术;在体育与健康领域,学习体育等,试设计一个学习知识结构图。
求证:
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知函数,设 (1)求的单调区间; (2)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值; (3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。