平面直角坐标系中,如图,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C。(1)当n=1时,如果a=-1,试求b的值。(2)当n=2时,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式。(3)当n=3时,将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,求a的值。
某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理销售结果如下表:
(1)跳楼价占原价的百分比是多少? (2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?
已知:,求:的值.
计算:
本市出租车的收费标准为:3千米以内(含3千米)收费5元,超过3千米的部分每千米收费1.20元(不足1千米按1千米计算),另加收0.60元的返空费.(1)设行驶路程为x千米(≥3且取整数),用x表示出应收费y元的代数式;(2)当收费为10.40元时,该车行驶路程不超过多少千米?路程数在哪个范围内?
某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)