在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,-3).(1)求出该抛物线的函数解析式;(2)设该抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称.若四边形OAPF的面积为48,求点P的坐标;(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值,若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.
(本小题7分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
(本小题7分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.
(本小题6分)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.
(本小题满分6分)计算:
计算(本题有6小题,每题4分,满分24分)(1)11-18-12 + 19 (2)(-5)× (-7)+ 20÷(-4)(3) (4)×-12÷(5)3 +12 ÷ ×(-3)-5 (6)-+2014××0-(-3)